Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Acta Pharm Sin B ; 2023 Jan 12.
Article in English | MEDLINE | ID: covidwho-2176448

ABSTRACT

There are currently approximately 4,000 mutations in the SARS-CoV-2 S protein gene and emerging SARS-CoV-2 variants continue to spread rapidly worldwide. Universal vaccines with high efficacy and safety urgently need to be developed to prevent SARS-CoV-2 variants pandemic. Here, we described a novel self-assembling universal mRNA vaccine containing a heterologous receptor-binding domain (HRBD)-based dodecamer (HRBDdodecamer) against SARS-CoV-2 variants, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28.1), Delta (B.1.617.2) and Omicron (B.1.1.529). HRBD containing four heterologous RBD (Delta, Beta, Gamma, and Wild-type) can form a stable dodecameric conformation under T4 trimerization tag (Flodon, FD). The HRBDdodecamer -encoding mRNA was then encapsulated into the newly-constructed LNPs consisting of a novel ionizable lipid (4N4T). The obtained universal mRNA vaccine (4N4T-HRBDdodecamer) presented higher efficiency in mRNA transfection and expression than the approved ALC-0315 LNPs, initiating potent immune protection against the immune escape of SARS-CoV-2 caused by evolutionary mutation. These findings demonstrated the first evidence that structure-based antigen design and mRNA delivery carrier optimization may facilitate the development of effective universal mRNA vaccines to tackle SARS-CoV-2 variants pandemic.

2.
Sci Adv ; 8(51): eabq3500, 2022 12 23.
Article in English | MEDLINE | ID: covidwho-2193375

ABSTRACT

It is urgent to develop more effective mRNA vaccines against the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants owing to the immune escape. Here, we constructed a novel mRNA delivery system [IC8/Mn lipid nanoparticles (IC8/Mn LNPs)]with high immunogenicity, via introducing a stimulator of interferon genes (STING) agonist [manganese (Mn)] based on a newly synthesized ionizable lipid (IC8). It was found that Mn can not only promote maturation of antigen-presenting cells via activating STING pathway but also improve mRNA expression by facilitating lysosomal escape for the first time. Subsequently, IC8/Mn LNPs loaded with mRNA encoding the Spike protein of SARS-CoV-2 Delta or Omicron variant (IC8/Mn@D or IC8/Mn@O) were prepared. Both mRNA vaccines induced substantial specific immunoglobulin G responses against Delta or Omicron. IC8/Mn@D displayed strong pseudovirus neutralization ability, T helper 1-biased immune responses, and good safety. It can be concluded that IC8/Mn LNPs have great potential for developing Mn-coordinated mRNA vaccines with robust immunogenicity and good safety.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Manganese , Immunoglobulin G , RNA, Messenger/genetics , Immunity
3.
Advanced functional materials ; 2022.
Article in English | EuropePMC | ID: covidwho-1980072

ABSTRACT

SARS‐CoV‐2 variants are now still challenging all the approved vaccines, including mRNA vaccines. There is an urgent need to develop new generation mRNA vaccines with more powerful efficacy and better safety against SARS‐CoV‐2 variants. In this study, a new set of ionizable lipids named 4N4T are constructed and applied to form novel lipid nanoparticles called 4N4T‐LNPs. Leading 4N4T‐LNPs exhibit much higher mRNA translation efficiency than the approved SM‐102‐LNPs. To test the effectiveness of the novel delivery system, the DS mRNA encoding the full‐length S protein of the SARS‐CoV‐2 variant is synthesized and loaded in 4N4T‐LNPs. The obtained 4N4T‐DS mRNA vaccines successfully trigger robust and durable humoral immune responses against SARS‐CoV‐2 and its variants including Delta and Omicron. Importantly, the novel vaccines have higher RBD‐specific IgG titers and neutralizing antibody titers than SM‐102‐based DS mRNA vaccine. Besides, for the first time, the types of mRNA vaccine‐induced neutralizing antibodies are found to be influenced by the chemical structure of ionizable lipids. 4N4T‐DS mRNA vaccines also induce strong Th1‐skewed T cell responses and have good safety. This work provides a novel vehicle for mRNA delivery that is more effective than the approved LNPs and shows its application in vaccines against SARS‐CoV‐2 variants. In this study, mRNA vaccines against SARS‐CoV‐2 variants delivered by lipid nanoparticles based on 4N4T lipids are constructed, and successfully trigger robust and durable humoral immune responses against SARS‐CoV‐2 and its variants including Delta and Omicron. In addition, head‐to‐head comparison studies find that the novel 4N4T lipids have a higher mRNA delivery efficiency than SM‐102.

4.
Signal Transduct Target Ther ; 7(1): 166, 2022 05 21.
Article in English | MEDLINE | ID: covidwho-1947279

ABSTRACT

The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists' desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.


Subject(s)
COVID-19 , COVID-19/genetics , COVID-19/therapy , Humans , Pandemics , Proteins , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL